

PUBLIC

Code Assessment

of the Mangrove Core

Smart Contracts

November 14th, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Findings 12

6 Resolved Findings 13

7 Informational 15

8 Notes 16

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Mangrove team,

Thank you for trusting us to help Mangrove Association (ADDMA) with this security audit. Our executive
summary provides an overview of subjects covered in our audit of the latest reviewed contracts of
Mangrove Core according to Scope to support you in forming an opinion on their security risks.

Mangrove Association (ADDMA) implements an order book-based exchange where makers can post
offers that are essentially promises to trade a certain token pair for a specified amount. Takers can take
these offers. When a taker takes an offer, the maker's smart contract is called and needs to fulfill the
promise to exchange the tokens. If the maker does not meet their obligation, a pre-defined gas
reimbursement will be given to the taker. Makers need to deposit the funds to reimburse takers when
creating the offer. The project allows participants full control over their funds up until they can really be
exchanged. Hence, avoiding idle or stale funds waiting for order execution.

This version implements a new internal data structure, using a tree of bitmaps in order to efficiently find
the next-best offer in the order book.

Even though the codebase is complex, we did not find any severe issues. The code quality is good and
Mangrove provides a good documentation for their project.

The general subjects covered are functional correctness, security and documentation. Security regarding
all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security. It is important to note that
security audits are time-boxed and cannot uncover all vulnerabilities. They complement but don't replace
other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• Code Corrected 2

• Specification Changed 1

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Mangrove Core repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 10 October 2023 379a0af795a388c2082bb54fd6ef7678157f0316 Initial Version

2 11 November 2023 596ed77be48838b10364b7eda1a4f4a4970c0cad After fixes

For the solidity smart contracts, the compiler version ^0.8.10; is specified. For the compilation version
0.8.20 is defined in the foundry.toml.

2.1.1 Excluded from scope
This assessment was focused on the core part of the Mangrove system. Excluded are all files outside of
the src/core and lib/core directory.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

For a detailed system overview of Mangrove core functionality, refer to the previous audit report covering
Mangrove core. The following overview will focus on the parts that changed in the updated codebase.
The most significant changes include the change of the internal data structure, as well as changing the
Offer interface to be defined by a tick (price) and an amount, rather than an in- and out-amount.

Mangrove Association (ADDMA) offers Mangrove Core, a decentralized exchange platform where
makers can place orders that can callback to the maker and execute arbitrary code to fulfill themselves.
In Mangrove Core, market makers can create offers, which are a promise that a specific smart contract
will trade inbound tokens for outbound tokens at a certain price and up to a certain volume if executed.
This enables market takers to trade against those orders, consuming them. In order to protect takers,
makers are required to post an amount of the gas currency into Mangrove Core, so that takers can be
compensated if they execute a faulty offer. Cleaners may also interact with Mangrove Core by triggering
offers that they know based on simulation will not succeed. By doing so, they will collect the gas security
deposit posted by the makers.

A market is specified by two tokens (A to B, but B to A would be another market) and their tick space. For
each market, an offer list exists. E.g., an offer that would buy token A for token B would be in another
list/market than an offer that buys token B for token A. Governance is required to define global
parameters and add lists with specific local (per-list) parameters. Offers in the same tick are kept in FIFO
order in a linked list called a bin. A tree structure is used to scan and retrieve bins efficiently.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 5

https://github.com/mangrovedao/mangrove-core/tree/379a0af795a388c2082bb54fd6ef7678157f0316
https://github.com/mangrovedao/mangrove-core/tree/596ed77be48838b10364b7eda1a4f4a4970c0cad
https://web.archive.org/web/20231110113815/https://chainsecurity.com/wp-content/uploads/2023/08/ChainSecurity_Mangrove_Association_ADDMA_Mangrove_audit.pdf
https://chainsecurity.com

To save gas and create a discretized order book, the price space is divided into discrete ticks in a fashion
inspired by Uniswap V3. More precisely, for each offer list, the parameter tickSpacing can be set. It is
at least one, then tick corresponds to price .

Once an offer is executed successfully, even partially, it is disabled but remains provisioned with the gas
currency. Makers can thus reuse the storage space allocated to the offer.

The tree structure sitting atop the bins is used to efficiently find the best (or next best) offer in an offer list.
Each non-leaf node stores a presence bit for each of its children, which is set if there exists an offer in the
subset of bins covered by the child. This allows the taker to quickly scan the tree and find the best price.
Each leaf of the tree contains 4 bins, represented as a pair of offer ids indicating the first and last offer in
the linked list. The root of the tree has 2 level1 children, each having 64 level2 children, which each has
64 level3 children, which each has 64 leaf children. This means that the tree can cover bins, which is
enough to cover the entire price space at any tick spacing.

The index of a bin is represented as a 21-bit signed integer in two's complement representation, which
can be efficiently destructured using bitwise operations:

s aaaaaa bbbbbb cccccc dd

The sign bit s selects the level1 node. a, b, c and d select the level2, level3, and leaf, respectively. d
selects the bin within the leaf.

Leafs store their zeroth bin in the most significant bits, whereas level3s, level2s, and level1s store their
zeroth bin in the least significant bits. In the root, the negative subtree is stored in the less significant bit.

To save gas, the local configuration of an offer list contains a cache of the nodes on the path to the
current best offer. This takes up 193 bits in the same storage slot.

2.2.1 Mangrove
The Mangrove singleton contract contains all of the on-chain functionality of the Mangrove decentralized
exchange. It is split into multiple components using inheritance. For technical reasons, the code for the
MgvView and MgvGovernable components is stored in the MgvAppendix logic contract and accessed
using delegatecall().

2.2.2 MgvOfferMaking
Functions used by market makers are implemented in this component. They are as follows:

• fund() allows a market maker to deposit an amount in the gas currency.

• withdraw() allows a market maker to take back the gas currency that they deposited and that is
not currently locked or forfeited.

• newOfferByTick() and newOfferByVolume() allow a market maker to post a new offer.

• updateOfferByTick() and updateOfferByVolume() allow a market maker to alter an existing
offer.

• retractOffer() allows a market maker to cancel an existing offer. The offer can be reactivated
and reused later. The offer can stay provisioned with gas currency, or the gas currency can be
internally credited to the maker.

• the default function, referred to as receive() in solidity, is an alias for fund()

2.2.3 MgvOfferTaking
Functions used by market takers are implemented in this component. They are as follows:

• marketOrderByTick(), marketOrderByTickCustom(), and marketOrderByVolume()
allow a taker to perform a market order, taking out 1 or more offers. The order may fail or partially fill,
and the taker may receive reimbursement for wasted gas from failing offers.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• cleanByImpersonation() allows a cleaner to remove a failing offer. The cleaner must supply
the address of a holder of the inbound token who set an ERC-20 approval for the Mangrove contract
to proceed, but the token will never actually be spent. The cleaner will collect part of the gas
currency provisioned for the offer as a bounty.

2.2.4 MgvOfferTakingWithPermit
Functions used for executing orders on behalf of market takers using allowance are implemented in this
component. They are as follows:

• marketOrderForByTick() and marketOrderForByVolume() allow an address with the
appropriate allowance to perform a market order on behalf of a taker.

• approve() allows the spender to trade on behalf of the owner. It is not to be confused with the
common ERC-20 function with the same name but different arguments. The approval specifies two
tokens, inbound and outbound, and an allowance denominated in the inbound token. As a result, the
spender can execute market orders using the funds of the owner, and the outbound token amount is
given to the owner. No explicit support exists for ERC-20 style "infinite" allowance.

• allowance() allows querying the trading allowance of a spender on a trading pair. It is not to be
confused with the common ERC-20 function with the same name but different arguments.

• permit() and DOMAIN_SEPARATOR() allow an EOA to provide allowance to a spender using an
EIP-712 signature. They are not to be confused with the common ERC-2612 functions with the
same name.

2.2.5 MgvGovernance
Functions used by governance are implemented in this component. They are as follows:

• activate() allows governance to enable a pair of assets to be traded and set the fee, density and
gas base parameters.

• deactivate() allows governance to disable trading for a pair of assets. It can later be reenabled
with activate().

• kill() allows governance to irrevocably kill the Mangrove contract. makers can still retract their
offers and withdraw all of their gas currency.

• setDensity96X32() allows governance to set the minimum density parameter for offers, which is
the amount of outbound token offered by offers per unit of gas consumed. If an oracle is configured
and returns an in-range value, this value is ignored.

• setFee() allows governance to set the protocol fee charged in outbound tokens. The maximum fee
is 2.56%.

• setGasbase() allows governance to set the per-offer list gas base parameter, which represents
the amount of kilo-gas that must be set aside for Mangrove itself to process an offer internally.

• setGasmax() allows governance to set the global gas max parameter, which is the maximum
amount of gas that an offer can provision.

• setMaxRecursionDepth() allows governance to set the maximum recursion depth parameter,
which is the most amount of offers that can be filled by a single market order.

• setMaxGasreqForFailingOffers() allows governance to set the gasreq for failing offers,
which bounds the amount of gas that failing offers can consume in a single market order. If this limit
is exceeded, the order may be partially filled.

• setGasprice() allows governance to set the default gasprice in Mwei. If an oracle is configured
and returns an in-range value, this value is ignored.

• setGovernance() allows governance to immediately transfer governance privileges to another
address.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• setMonitor() allows governance to set the address for the monitor contract, which also serves as
a gasprice and density oracle.

• setNotify() allows governance to toggle the notify parameter, which controls whether the
monitor/oracle is notified when an offer is taken.

• setUseOracle() allows governance to toggle the use oracle parameter, which controls whether
the oracle is used to recover gas price and density values.

• withdrawERC20() allows governance to recover any ERC-20 tokens held by Mangrove, whether
by accident or as a result of the protocol fee.

2.2.6 MgvView
View functions are implemented in this component. Note that all functions except for balanceOf() and
global() will revert if the offerlist being queried is locked. This is to avoid Makers having information
about the orderbook state during makerExecute(), which could allow them to distinguish between
"real" order execution and cleaning.

They are as follows:

• balanceOf() tracks the internal balance in the gas currency owned by a given maker. It is not to
be confused with the common ERC-20 function with the same signature but different semantics.

• allowance() allows querying the trading allowance of a spender on a trading pair. It is not to be
confused with the common ERC-20 function with the same name but different arguments.

• global() allows to query the global configuration parameters of Mangrove, packed in 256 bits

• local() allows to query the configuration parameters of an offer list, packed in 256 bits

• config() combines global() and local()

• locked() allows to query whether the reentrancy lock of a certain offer list is set.

• best() allows one to query the best-priced offer in an offer list.

• olKeys() allows to query the pre-image of an offer list key hash.

• offers() allows to query a single offer, packed in 256 bits

• offerDetails() allows to query details of a single offer, packed in 256 bits

• offerData() combines offers() and offerDetails()

• governance() allows to query the current governance address.

• leafs() allows querying a leaf of the tree structure

• level3s() allows to query a level 3 node of the tree structure

• level2s() allows to query a level 2 node of the tree structure

• level1s() allows to query a level 1 node of the tree structure.

• root() allows to query the root node of the tree structure.

2.3 Roles and Trust Model
• The contract must have a fully trusted Governance role that maintains the markets and market

specifications.

• ERC20 Tokens with the following characteristics should not be used in the system: Tokens with
multiple entry points, tokens with fees-on-transfer, and tokens that revert when transferring amount
0.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

• We assume that the no hash collision can be found for a market's hash (olKey.hash()) in such a
form that it would collide with another object in storage.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• Specification ChangedIncorrect Comments

• Code CorrectedRedundant Input Validation

• Code CorrectedWithdraw Does Not Revert

Informational Findings 1

• Code CorrectedTypo in Error String

6.1 Incorrect Comments
Design Low Version 1 Specification Changed

CS-MGVC-004

1. in TickTreeLib, the comment for bestNonEmptyBinPos is incorrect and should read:

pos is initially 1 if leaf has some nonzero bit in its MSB half, 0 otherwise. Then pos is A | B, where A
is iszero(pos)<<1, so A is 0 if leaf has some nonzero bit in its MSB half, 2 otherwise. And B is 0 if
leaf >> (pos << 7) has some nonzero bit in its most significant 192 bits, 1 otherwise.

2. The comment for Bitlib.fls indicates:

The fls function below is general-purpose and used by tests but not by Mangrove itself.

However, the function DensityLib.from96X32 uses it.

3. In MgvOfferTaking, there is a typo (be instead of by):

We start by enabling the reentrancy lock for this offer list.

4. In MgvOfferTaking, the following comment above applyPenalty() is misleading:

If the transaction was a success, we entirely refund the maker and send nothing to the taker.

The applyPenalty function is never called if the transaction is successful. In this case, the provision
stays in the order and the Maker is not automatically refunded.

Specification changed:

All comments have been corrected.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6.2 Redundant Input Validation
Correctness Low Version 1 Code Corrected

CS-MGVC-005

In marketOrderForByVolume(), the following checks are performed:

require(uint160(takerWants) == takerWants, "mgv/mOrder/takerWants/160bits");
require(uint160(takerGives) == takerGives, "mgv/mOrder/takerGives/160bits");

These checks are redundant relative to the stricter checks performed by ratioFromVolumes().

Code corrected:

The redundant checks have been removed.

6.3 Withdraw Does Not Revert
Design Low Version 1 Code Corrected

CS-MGVC-003

When calling withdraw() to withdraw native tokens that were used for gas provisions, a low-level call is
used. If the call fails, withdraw() returns with a false boolean as return value. It does not revert.

The amount is debited from the user's internal balance, so the user will not be able to withdraw anymore.

This locks the native tokens in the contract.

Code corrected:

The withdraw function now reverts when the low-level transfer fails and always returns true if it does not
revert.

6.4 Typo in Error String
Informational Version 1 Code Corrected

CS-MGVC-002

In src/core/MgvOfferTaking.sol line 573, the error string should be mgv/totalGave/overflow
instead of mgv/totalGot/overflow.

Code corrected:

The typo has been corrected.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Permit Does Not Specify Price and Lasts
Forever
Informational Version 1 Acknowledged

CS-MGVC-001

In MgvOfferTakingWithPermit, an allowance can be given to another address, allowing it to make orders
on an address's behalf.

This allowance lets the spender take orders at any price. No maxTick is specified. Essentially, it is an
allowance to execute a market order at any price. The impact is limited, as Mangrove only allows taking
the best order on the order book. However, if orders are removed from the book inbetween the allowance
being given and the order execution, the trade may have a much worse execution price than expected.

The _allowance given lasts forever. The spender could execute marketOrderFor at a much later
time, when the price is totally different.

The usage here is different than in Uniswap, from which the permit() function was adapted. In
Uniswap, the permit is used instead of an ERC20 approval. The user will still need to call the swap()
function themselves. Here, the _allowance is much more powerful. It allows a trade to happen without
the user making a transaction at all.

As a result, allowances should only be given by users if the full allowance is expected to be used within a
short time. Otherwise, trades may be executed at unintended prices. Unused or partially used allowances
should be retracted.

Acknowledged:

Mangrove Association (ADDMA) clarified that this is intended behavior:

This is on purpose. Additional restrictions can be set up by the authorized
contract itself, but the main purpose is to have a general delegation
mechanism that works e.g. for cold wallets that want to allow the hot wallet
some uses (such as trading on Mangrove) but not arbitrary token transfers.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Gas Price Set at Offer Creation
Note Version 1

The gasprice for an order's gas provision is set at offer creation time and not updated automatically.

As a result, orders that were created at a time when gas was cheap may not have enough provision to
fully reimburse the Taker if executed when the chain's gas price is higher. There will also be no incentive
to clean failing orders where this is the case.

8.2 Gasmax Must Be Smaller Than Block Gas
Limit
Note Version 1

The global gasmax parameter can be set by governance.

The maximum possible value for gasmax is 2^24 - 1. If the value chosen is close to the block gas limit
of the chain on which the contracts are deployed, a Maker will be able to create a failing order with a
gasreq of gasmax. It will be impossible to clean this order, as it will be impossible to supply sufficient
gas for the Maker call. The order will always revert and blame the Taker.

Note that the maximum possible value for gasmax is around 16.7 million, which is more than Ethereum's
average gas target per block. Other chains may have lower gas block limits.

Governance should be careful not to set gasmax to a value that is too high, as it may cause a permanent
DoS.

8.3 Large Offers Could Have Low Effective
Density
Note Version 1

The minimum offer density (gas per token given) is enforced based on the total size (gives) of the order:

require(
 ofp.gives >= ofp.local.density().multiply(ofp.gasreq + ofp.local.offer_gasbase()),
 "mgv/writeOffer/density/tooLow"
);

This means that the gasreq can be very high, as long as the total order size is very large. If an order
with a very large size is created, it is likely that most Takers will only partially fill the order.

This would lead to the effective density (gas per token received) being low.

Governance can limit the maximum gasreq that a Maker can set by changing the global gasmax
parameter.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

8.4 Maker Can Exclude by Tx.Origin
Note Version 1

A Maker could create an order that checks tx.origin and fails for certain addresses.

Such an order would be impossible for another address to clean using cleanByImpersonation(), as
the tx.origin cannot be impersonated.

However, the targeted address can clean the order themselves, or just accept the gas refund when
taking the order.

8.5 Tokens That Revert on Zero-Transfer Not
Supported
Note Version 1

ERC20-like tokens that revert when transfer() is called with amount == 0 are not supported. If such
a token was used, any Offer that gives that token could be cleaned by specifying takerWants == 0,
which would incorrectly blame the Maker.

Reverting on zero-transfer does not correctly comply with the ERC20 standard. However, there are
tokens in use that have this functionality. Governance should check the token's ERC20-compliance
before activating a market using it.

Mangrove Association (ADDMA) - Mangrove Core - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Mangrove
	2.2.2 MgvOfferMaking
	2.2.3 MgvOfferTaking
	2.2.4 MgvOfferTakingWithPermit
	2.2.5 MgvGovernance
	2.2.6 MgvView

	2.3 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Incorrect Comments
	6.2 Redundant Input Validation
	6.3 Withdraw Does Not Revert
	6.4 Typo in Error String

	7 Informational
	7.1 Permit Does Not Specify Price and Lasts Forever

	8 Notes
	8.1 Gas Price Set at Offer Creation
	8.2 Gasmax Must Be Smaller Than Block Gas Limit
	8.3 Large Offers Could Have Low Effective Density
	8.4 Maker Can Exclude by Tx.Origin
	8.5 Tokens That Revert on Zero-Transfer Not Supported

